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A method to estimate dispersion relations and warping associated with elastic wave
propagation in a bar is presented. The method is based on Hamilton’s principle. It is shown
how the theoretical model together with strain measurements can be used to evaluate three
dimensional (3D) field quantities like displacements and stresses at an arbitrary position in
the bar, as well as energy flux through an arbitrary cross-section of the bar. It is also shown
how redundant measurements can be used to increase the accuracy. The method is general
and can be applied to any mode of wave propagation, isotropic or anisotropic linearly
elastic material, and any cross-sectional geometry. Here, it is applied to longitudinal waves
in a split Hopkinson pressure bar with linear elastic isotropic material behaviour and
square cross-section. In particular, axial displacement, axial stress and energy flux are
evaluated at a free end of the bar in order to test the method. The method is also used to
estimate the Poisson ratio of the bar material, by measuring axial and transverse strains at
the same axial position.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Longitudinal stress wave propagation in bars is often used in experimental work, like, e.g.,
in the split Hopkinson pressure bar (SHPB). If the waves carry significant energy at
relatively high frequencies, dispersion must be taken into account. This is a standard
procedure nowadays and has been used by, e.g., Follansbee and Frantz [1], Gong et al. [2]
and Li and Lambros [3]. At high frequencies, the cross-section of the bar warps, and
variables like stress and displacement vary over the cross-section. This effect has been
studied experimentally [4] and with the aid of a finite element model [5] by Tyas and
Watson, who showed that warping may not be negligible. For bars with circular cross-
section, the warping and dispersion relations can be evaluated from the exact theoretical
equations by Pochammer [6] and Chree [7] as done by Tyas and Watson. For arbitrary
cross-sections, finite element methods have been used by, e.g., Hladky-Hennion [8],
Volovoi et al. [9] and Taweel et al. [10].

Here, Hamilton’s principle with matrix formulations similar to those used in the finite
element method, has been employed but with co-ordinate functions valid over the whole
cross-section. The resulting eigenvalue problem has been formulated to become real-
valued. Similar formulations have been made previously for the finite element method by,
e.g., Hladky-Hennion and Volovoi et al. A method to solve the eigenvalue problem by
inverse iterations for a number of consecutive frequencies and a special mode of wave
propagation is suggested.

It has been shown here how the theoretical model and experimental data can be
combined to determine wave propagation in a bar. With the procedure used, dispersion
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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and warping are taken into account automatically. The theoretical model allows variables
like stress, strain and displacement to be expressed as functions of time and position in the
bar. An expression for the energy flux through a cross-section of the bar has also been
formulated. Typically, the conditions at the end of the bar are of interest. The functions
are Fourier series which makes the method very fast if a fast Fourier transform (FFT)
technique is used.

It has been shown by, e.g., Lundberg and Henchoz [11], Zhao and Gary [12] and Bacon
[13] how measurements of strains at two positions can be used to separate waves travelling
in the two opposite directions through a bar. Park and Zhou [14] replaced one of the
measurements by an end condition of the bar. Zhao and Gary as well as Bacon, pointed
out that a problem arises when working in the frequency domain if the distance between
the two measuring positions equals an integral multiple of half the wavelength. This
condition is always approximately true for some frequency components. They solved the
problem by also working in the time domain.

Here, a method has been used which employs three or more strain gauges in order to
obtain redundant data. This method alleviates the problem with critical frequencies and
allows one to work completely in the frequency domain. Also, it has been shown how
redundant data can be obtained from only two measuring positions. This can be done
when the waves travelling in the two directions are separated in time for at least one
measuring position, as in the most common set-up for SHPB experiments. The method of
using redundant data to get better accuracy in connection with wave propagation in bars
has been used previously by Hillstr .oom et al. [15] in order to estimate the complex modulus
of a viscoelastic bar.

The method to find dispersion relations and warping can be applied to bars with
arbitrary cross-section, isotropic or anisotropic linearly elastic material and any mode of
wave propagation, e.g., longitudinal, flexural or torsional. A general and detailed
description of the formulation to be used was given in Widehammar et al. [16]. Here, this
formulation has been summarized and further developed. The method to couple the
theoretical model to experimental data, preferably using redundant measurements, can be
used in a variety of applications. Examples are SHPB experiments [17], mechanical
impedance gauges [18], force–penetration measurements in rock drilling [19] and dynamic
measurements of frictional properties at an end of a bar [20].

Longitudinal waves in a bar with square cross-section has been considered as an
example here. Cartesian co-ordinates and isotropic linearly elastic material have been
used. Experiments which validate the method have been carried out. In particular, the
displacements and stresses at a free bar end have been evaluated, as well as the energy flux
through the bar end.

2. THEORETICAL BACKGROUND

In the absence of external forces, Hamilton’s principle states that

d
Z t2

t1

ðT � UÞ dt

� �
¼ 0; ð1Þ

where T is the kinetic energy, U is the elastic strain energy and t1 and t2 are two arbitrary
instants of time t: The kinetic energy is give by

T ¼
Z Z Z

V

1

2
r’uuT ’uu

� �
dV ; ð2Þ
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where r is the mass density, u ¼ ½ux; uy; uz�T is the displacement vector, V is the volume of
the body, and an ‘‘overdot’’ denotes partial differentiation with respect to time t: Cartesian
co-ordinates x; y and z are used. The elastic strain energy of the body is

U ¼
Z Z Z

V

1

2
sTe

� �
dV ; ð3Þ

where s ¼ ½sx; sy; sz; txy; tyz; tzx�T and e ¼ ½ex; . . . ; gzx�T are vectors containing the
components of stress and strain, respectively. For a linearly elastic and isotropic material,
the generalized Hooke’s law is given by

s ¼ ECe; ð4Þ

where E is Young’s modulus and C is the symmetric matrix of normalized elastic
constants. The vector of strain components e and the displacement vector u are related
through the kinematic relation

e ¼ =u; ð5Þ

where = contains the partial differential operators @=@x; @=@y and @=@z: For a study of
wave propagation in a bar with its axis oriented in the z-direction, it is suitable to split the
matrix = into two parts, i.e.,

= ¼ =xy þ =za
@

@z
; ð6Þ

where =xy contains partial differential operators @=@x and @=@y and =z is a constant
matrix. The parameter a is a reference length, such as the radius of a circular bar or half
the side length of a bar with square cross-section. It is introduced in order to obtain the
same physical dimension of =xy and =z: An approximate displacement field associated
with a propagating wave can be written

u ¼ RefAUðx; yÞdeiðot�kzÞg; ð7Þ

where A is a complex-valued amplitude, U is a (3 
 m) matrix containing given co-
ordinate functions, d is a normalized vector of m complex-valued constants, o is the
angular frequency and k is the wavenumber. The amplitude A has the physical dimension
of length, while U and d are dimensionless. Equations (2)–(7), inserted into Hamilton’s
principle (1), leads to the eigenvalue problem

K0 þ i
k

k0
ðK1 � KT

1 Þ þ
k

k0

� �2

K2 �
o
o0

� �2

M

 !
d ¼ 0; ð8Þ

where

k0 ¼
1

a
; o0 ¼

ffiffiffiffiffiffiffi
E

a2r

s
ð9Þ

are reference quantities and

K0 ¼
Z Z

S

ð=xyUÞTC=xyU dS; K1 ¼
Z Z

S

UT=T
z C=xyU dS; ð10; 11Þ

K2 ¼
Z Z

S

UT=T
z C=zU dS; ð12Þ
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and

M ¼ 1

a2

Z Z
S

UTU dS ð13Þ

are dimensionless matrices. The quantity S is the cross-sectional area of the bar. The
details of derivation can be found in reference [16].

The eigenvalue to solve for is one of the quantities k=k0 or o=o0 with the other known.
For a given angular frequency o; this is a quadratic eigenvalue problem with 2m solutions.
The eigenvalue k=k0 is generally complex-valued, but for modes corresponding to
propagating waves, k=k0 is real. Non-real wavenumbers correspond to end modes which
decay with distance from the bar end, see e.g. reference [10]. Suppose that a solution (k; d),
where k is positive and real, is found. This corresponds to a wave travelling in the positive
z-direction. Then, by forming the complex conjugate of equation (8), one can show that
(�k; d�), where a ‘‘star’’ denotes complex conjugate, is also a solution to the eigenvalue
problem. This second solution corresponds to a wave of the same mode which travels in
the negative z-direction. The approximate displacement field for waves of one single mode
which travels in both directions, can then be written as

u ¼ RefAUdeiðot�kzÞ þ BUd�eiðotþkzÞg: ð14Þ

From here on, the notation ‘‘Re’’ for real part will be left out if there is no risk of
confusion.

3. SOLVING THE EIGENVALUE PROBLEM

In an experimental test, the interest is normally focused on a particular propagating
mode. The eigenvalue k=k0 of the eigenvalue problem (8) is then real-valued, and it is well
known from the literature that ux and uy are phase shifted p=2 from uz; see e.g. Kolsky
[21]. By dividing all matrices into submatrices, and rearranging the eigenvalue problem (8),
one can transfer it to a real-valued problem with symmetric matrices, which has real
eigenvectors for the propagating modes.

The known phase shift between ux and uy on one hand, and uz on the other hand,
motivates one to divide the vector u and the right-hand side of equation (7) into

u ¼
ua

ub

" #
¼

Ua 0

0 Ub

" #
da

db

" #
Aeiðot�kzÞ; ð15Þ

where ua ¼ ½ux; uy�T; ub ¼ ½uz� (scalar), Ua is a (2
 ma) matrix and Ub is a (1 
 mb)
matrix. It should be noted that Ua and da express the co-ordinate functions and degrees
of freedom connected to displacements in the transverse directions, and Ub and db

are connected to axial displacements. Then, the vector of strain components e can be split
into

e ¼
ea

eb

" #
; ea ¼

ex

ey

ez

gxy

2
6664

3
7775; eb ¼

gyz

gzx

" #
; ð16Þ
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the matrices =xy and =z into

=xy ¼
=a

xy 0

0 =b
xy

" #
; =a

xy ¼

@

@x
0

0
@

@y

0 0

@

@y

@

@x

2
6666666664

3
7777777775
; =b

xy ¼

@

@y

@

@x

2
664

3
775 ð17Þ

and the matrix =z into

=z ¼
0 =b

z

=a
z 0

" #
; =a

z ¼ 1

a

0 1

1 0

" #
; =b

z ¼ 1

a

0

0

1

0

2
6664
3
7775; ð18Þ

respectively. Similarly, the vector of stress components s can be split into

s ¼
sa

sb

" #
; sa ¼

sx

sy

sz

txy

2
6664

3
7775; sb ¼

tyz

tzx

" #
; ð19Þ

and the normalized matrix of elastic constants into

C ¼
Ca 0

0 Cb

" #
; Ca ¼

a1 a2 a2 0

a2 a1 a2 0

a2 a2 a1 0

0 0 0 a3

2
6664

3
7775; Cb ¼

a3 0

0 a3

" #
ð20Þ

with

a1 ¼
1 � n

ð1 þ nÞð1 � 2nÞ; a2 ¼
n

ð1 þ nÞð1 � 2nÞ; a3 ¼
1

2ð1 þ nÞ; ð21Þ

where n is the Poisson ratio.
The eigenvalue problem (8) can be expressed as

J K0 þ i
k

k0
ðK1 � KT

1 Þ þ
k

k0

� �2

K2 �
o
o0

� �2

M

 !
J�1Jd ¼ 0; ð22Þ

where

J ¼
I 0

0 iI

" #
; J�1 ¼

I 0

0 �iI

" #
ð23Þ

and I is the unity matrix. Inserting the submatrices defined above, creating the vector
*dd ¼ Jd; multiplying J and J�1 into the parentheses and simplifying, one obtains

*KK0 þ
k

k0
ð *KK1 þ *KK

T

1 Þ þ
k

k0

� �2

*KK2 �
o
o0

� �2

*MM

 !
*dd ¼ 0; ð24Þ
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where

*KK0 ¼
Z Z

S

ð=a
xyU

aÞTCa=a
xyU

a 0

0 ð=b
xyU

bÞTCb=b
xyU

b

" #
dS; ð25Þ

*KK1 ¼
Z Z

S

0 UaT=aT
z Cb=b

xyU
b

�UbT=bT
z Ca=a

xyU
a 0

" #
dS; ð26Þ

*KK2 ¼
Z Z

S

UaT=aT
z Cb=a

zU
a 0

0 UbT=bT
z Ca=b

zU
b

" #
dS; ð27Þ

*MM ¼ 1

a2

Z Z
S

UaTUa 0

0 UbTUb

" #
dS ð28Þ

and

*dd ¼
da

idb

" #
: ð29Þ

The four matrices *KK0; ð *KK1 þ *KK
T

1 Þ; *KK2 and *MM are real and symmetric, and it can be shown
that

K0 ¼ *KK0; K2 ¼ *KK2; M ¼ *MM ð30Þ

and

K1 ¼
I 0

0 �I

" #
*KK1: ð31Þ

If k=k0 is given, equation (24) is a generalized eigenvalue problem with real-valued
symmetric matrices. Thus, the eigenvalues ðo=o0Þ2 and eigenvectors *dd are real. If instead
o=o0 is given, the eigenvalues k=k0 are generally complex-valued, but the propagating
modes have real k=k0 and real *dd: The fact that *dd is real for propagating modes means that
da is real-valued and db is imaginary, which leads to d� ¼ ½daT;�dbT�T: Inserting the
submatrices given above into equations (14), (5), (6) and (4) one obtains

u ¼
ua

ub

" #
¼

Uada

Ubdb

" #
Aeiðot�kzÞ þ

Uada

�Ubdb

" #
BeiðotþkzÞ; ð32Þ

e ¼
ea

eb

" #
¼

=a
xyU

ada � ika=b
zU

bdb

=b
xyU

bdb � ika=a
zU

ada

" #
Aeiðot�kzÞ

þ
=a

xyU
ada � ika=b

zU
bdb

�=b
xyU

bdb þ ika=a
zU

ada

" #
BeiðotþkzÞ ð33Þ

and

s ¼
sa

sb

" #
¼E

Ca=a
xyU

ada � ikaCa=b
zU

bdb

Cb=b
xyU

bdb � ikaCb=a
zU

ada

" #
Aeiðot�kzÞ

þ E
Ca=a

xyU
ada � ikaCa=b

zU
bdb

�Cb=b
xyU

bdb þ ikaCb=a
zU

ada

" #
BeiðotþkzÞ: ð34Þ
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It can be seen that ua; ea and sa are in phase with each other, but phase-shifted p=2 relative
to ub; eb and sb:

In this work, inverse iteration according to Ruhe [22] was used to solve the eigenvalue
problem (24) for the desired mode of wave propagation at each angular frequency

oj ¼ ðj � 1ÞDo; j ¼ 1; 2; . . . : ð35Þ

The solution for o ¼ oj was used as an initial guess for o ¼ ojþ1: This method is very fast
and gives a solution only for the mode of interest. Furthermore, the eigenvectors have the
proper phase angle (i.e. zero) directly, which is not guaranteed using standard functions in
mathematical toolboxes like, e.g., Matlab.

4. CONDITIONS IN A SHPB

In a SHPB, the first mode of longitudinal waves in the two directions is present. It will
be assumed that the influence from other modes is negligible. The displacement field
associated with waves in the bar can be transformed from the time domain into the
frequency domain, and vice versa, using the discrete Fourier transform (DFT). A general
expression for an approximate displacement field is

u ¼ðu0 þ v0tÞ½0; 0; 1�T þ e0½�nx;�ny; z�T

þ
XM=2

p¼2

ðApUdpe
iðopt�kpzÞ þ BpUd�pe

iðoptþkpzÞÞ; ð36Þ

where M is the number of samples in the DFT. The constant term in the DFT of the
displacements is related to a constant strain e0 in the axial direction of the bar. This term
does not represent waves and is separated from the sum for clarity. In addition, rigid-body
motion in the axial direction can be present in the bar. The co-ordinate functions in U are
independent of p and can be taken out of the sum, which gives

u ¼ ðu0 þ v0tÞrþ e0eþ Uw; ð37Þ

where the vectors r ¼ ½0; 0; 1�T and e ¼ ½�nx;�ny; z�T represent rigid-body motion and a
constant strain, respectively, while the vector

wðz; tÞ ¼
XM=2

p¼2

ðApdpe
�ikpz þ Bpd

�
pe

ikpzÞ eiopz ð38Þ

represents wave propagation. The expression for w; i.e., the real part of the sum in
equation (38), is best computed using an inverse DFT when the variables in the sum are
known.

From equations (5), (6), (17), (18) and (37), one obtains

e ¼ e0½�n;�n; 1; 0; 0; 0�T þ =xyUwþ =zUaw0; ð39Þ

where

w0 ¼
XM=2

p¼2

ð�Apdpe
�ikpz þ Bpd

�
pe

ikpzÞ ikpe
iopt ð40Þ
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is the derivative of w with respect to z: From equations (4), (20), (21) and (39), the vector
of stress components can be obtained as

s ¼ Ee0½0; 0; 1; 0; 0; 0�T þ EC=xyUwþ EC=zUaw0: ð41Þ

5. MEAN VALUES OVER A CROSS-SECTION

In experimental studies, interest is often devoted to conditions at a specific cross-section,
e.g., at the end of the bar. From the previous sections, variables like u and s can be
calculated as functions of time at an arbitrary position (x; y; z) of the bar. Such detailed
information over the cross-section is normally too ambitious because of the inaccuracy of
measurements and the possible existence of end modes. Instead, it may be valuable to
obtain a mean value of a variable over the cross-section. For the displacement
components, the mean values are

%uuðzc; tÞ ¼ 1

S

Z Z
S

uðx; y; zc; tÞ dS; ð42Þ

where zc is the z-co-ordinate of the specified cross-section. Equation (37) gives

%uuðzc; tÞ ¼ ðu0 þ v0tÞrþ e0½0; 0; zc�T þ Fwðzc; tÞ; ð43Þ

where

F ¼ 1

S

Z Z
S

U dS: ð44Þ

The components %uux and %uuy are zero in a SHPB.
The stress components in s are given by equation (41), and the mean values over the

cross-section are

%ssðzc; tÞ ¼ Ee0½0; 0; 1; 0; 0; 0�T þ ECFxywþ ECFzaw0; ð45Þ

where

Fxy ¼ 1

S

Z Z
S

ð=xyUÞ dS ð46Þ

and

Fz ¼
1

S

Z Z
S

ð=zUÞ dS ð¼ =zFÞ: ð47Þ

6. ENERGY FLUX AT A CROSS-SECTION

The stress vector at a point of a cross-section of the bar, t ¼ ½tzx; tyz;sz�T; can be
expressed as

t ¼ a=T
z s: ð48Þ

This result follows from the natural boundary conditions obtained with Hamilton’s
principle. Inserting equations (18) and (41) into equation (48), one obtains

t ¼ Ee0½0; 0; 1�T þ Ea=T
z C=xyUwþ Ea2=T

z C=zUw0: ð49Þ
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The energy flux in positive z direction through the cross-section is

Pðz; tÞ ¼ �
Z Z

S

’uuTt dS: ð50Þ

With use of equations (37) and (49), one obtains

Pðz; tÞ ¼ �
Z Z

S

ðv0r
T þ ’wwTUTÞ


 ðEe0½0; 0; 1�T þ Ea=T
z C=xyUwþ Ea2=T

z C=zUw0Þ dS; ð51Þ

where

’ww ¼
XM=2

p¼2

ðApdpe
�ikpz þ Bpd

�
pe

ikpzÞ iope
iopt ð52Þ

is the derivative of w with respect to time. Simplification gives

Pðz; tÞ ¼ � E

Z Z
S

v0e0 þ v0C3ð=xyUwþ a=zUw0Þ

þ e0 ’wwTUT
3 þ a ’wwTUT=T

z Cð=xyUwþ a=zUw0Þ dS; ð53Þ

where C3 and U3 denote the third row of each matrix. Evaluating the integral, one obtains

Pðz; tÞ ¼ � EðSv0e0 þ Sv0C3ðFxywþ aFzw
0Þ

þ Se0 ’wwTFT
3 þ a ’wwTðK1wþ aK2w

0ÞÞ: ð54Þ

7. EXPERIMENTAL CALIBRATION OF THE BAR

In the equations above, there are only four parameters which depend on the bar in the
experimental set-up, i.e., a; r; E and n: The first two are easy to determine, but if no
reliable material data are available, it can be cumbersome to determine E and n: A test
specimen must be manufactured and a testing machine must be used. Another way to
determine these parameters, directly from the bar in use, is as follows.

Young’s modulus E can be determined by measuring the time for the wave to travel a
known distance. The phase velocity

c0 ¼
ffiffiffiffi
E

r

s
ð55Þ

for longitudinal waves with infinite wavelength is dominant, so measuring this velocity and
knowing the density r will give Young’s modulus E:

A way to determine the Poisson ratio n, is to measure the strain in the axial and
transverse directions at the same axial position. The vector of strain components ea ¼
½ex; ey; ez; gxy�T in a SHPB is obtained by using equations (33) and (39) to obtain

ea ¼ e0½�n;�n; 1; 0�T þ
XM=2

p¼2

qpðApe
�ikpz þ Bpe

ikpzÞ eiopt; ð56Þ

where

qp ¼ =a
xyU

ada
p � ikpa=b

zU
bdb

p: ð57Þ
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According to equation (56), the ratio of the axial to the transverse strain as a function of
time is

ez

ey

� �
theoretical

¼
e0 þ pT

z

PM=2
p¼2 qpðApe

�ikpz þ Bpe
ikpzÞ eiopt

�ne0 þ pT
y

PM=2
p¼2 qpðApe�ikpz þ BpeikpzÞ eiopt

; ð58Þ

where the vectors pT
y ¼ ½0; 1; 0; 0� and pT

z ¼ ½0; 0; 1; 0� are used to pick the right strain
component. Note that the values of the co-ordinates x and y in the matrix U; included in
qp; should correspond to the positions of the strain gauges.

From a measurement of the strain component eb; where b is one of x; y and z; at
position (xj ; yj; zj), one gets the discrete time signal

ebðxj; yj; zj; tqÞ ¼ ejðt1 þ ðq � 1ÞDtÞ ¼ ejq; q ¼ 1; 2; . . . ;M; ð59Þ
where Dt is the sampling interval. The corresponding DFT is

#eejp ¼
XM
q¼1

ejqe
�i2pððq�1Þðp�1Þ=MÞ; p ¼ 1; . . . ;M: ð60Þ

The time signal can be viewed as the sum of trigonometric functions

ejðtÞ ¼ Cj1 þ
XM=2

p¼2

Cjpe
iopt; ð61Þ

where

Cj1 ¼
1

M
#eej1; Cjp ¼ 2

M
#eejp; op ¼ 2p

p � 1

MDt
: ð62Þ

So, the ratio of the axial to the transverse strain, obtained from measurements, is

ez

ey

� �
experimental

¼
Cz1 þ

PM=2
p¼2 Czpe

iopt

Cy1 þ
PM=2

p¼2 Cypeiopt
: ð63Þ

If the theoretical and experimental ratios in equations (58) and (63) should be equal at an
arbitrary instant of time, it should be true for the constant parts that

�1

n
¼ Cz1

Cy1
; ð64Þ

and for every component p of the Fourier series that

Dzp

Dyp

¼ Czp

Cyp

; ð65Þ

where

Dzp ¼ pT
z qp; Dyp ¼ pT

y qp: ð66Þ

Adjusting n to get the best fit between the theoretical and experimental ratios as a function
of o=o0; will give an estimation of n:

8. ESTIMATION OF COMPLEX AMPLITUDES FROM REDUNDANT STRAIN
MEASUREMENTS

In a SHPB, the strains gyz and gzx are of less importance, at least, they are not directly
measured. Therefore, the attention is here focused on the vector ea ¼ ½ex; ey; ez; gxy�T as
given by equation (56). The theoretical expression for a strain component ebðtÞ; where b is
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one of x; y and z; at position (xj ; yj; zj) is then

ebðxj; yj; zj; tÞ ¼ ej;theoreticalðtÞ ¼ pT
j ea; ð67Þ

where pj is a vector, used to pick the strain component eb: Substitution of equation (56)
into this relation gives

ej;theoreticalðtÞ ¼ e0pT
j ½�n;�n; 1; 0�T

þ pT
j

XM=2

p¼2

qpðxj ; yjÞðApe
�ikpzj þ Bpe

ikpzj Þ eiopt: ð68Þ

From measurements of the same strain component, and use of equation (61), one obtains

ej;experimentalðtÞ ¼ Cj1 þ
XM=2

p¼2

Cjpe
iopt: ð69Þ

The requirement that these expressions for the strain should be identical gives

e0pT
j ½�n;�n; 1; 0�T ¼ Cj1 ð70Þ

for the first term and

pT
j qpðxj; yjÞðApe

�ikpzj þ Bpe
ikpzj Þ ¼ Cjp ð71Þ

for each component in the series. It can be seen that the two parameters u0 and v0 in
equation (36), which represents rigid-body motion, cannot be determined from the strain
measurements. Instead, these two parameters can be determined from the condition that
the bar is quiescent at the beginning of the experiment. It can also be seen that the two
unknowns Ap and Bp cannot be determined from a single equation (71).

Measurements made simultaneously at two or more, say N; positions lead to the
systems of equations

pT
1

pT
2

..

.

pT
N

2
666664

3
777775

�n

�n

1

0

2
6664

3
7775e0 ¼

C11

C21

..

.

CN1

2
666664

3
777775 ð72Þ

and for each p;

e�ikpz1 eikpz1

e�ikpz2 eikpz2

..

. ..
.

e�ikpzN eikpzN

2
666664

3
777775

Ap

Bp

" #
¼

C1p=D1p

C2p=D2p

..

.

CNp=DNp

2
666664

3
777775; ð73Þ

where

Djp ¼ pT
j qpðxj ; yjÞ: ð74Þ

If N > 1 when estimating e0; and N > 2 when estimating Ap and Bp; the systems of
equations above are overdetermined, and can be solved by the least-squares method. An
overdetermined system contains redundant information, and as a result, gives better
accuracy when estimating e0; Ap and Bp: If two rows in the system matrix in equation (73)
are linearly dependent, some redundant information will be lost. This occurs if

kpza ¼ kpzb þ np; ð75Þ
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where 14a; b4N and n is an arbitrary integer. This relation will always be approximately
satisfied for some p if the frequency resolution is high. In terms of wavelength lð¼ 2p=kÞ;
this condition can be expressed as

za � zb  n
lp

2
: ð76Þ

If N is a small number, or if the strain gauges are equidistant, i.e., za � zb ¼ zb � zg ¼
� � �  nlp=2; this may be a serious problem. One way to avoid the problem is to position
one or more strain gauges where waves travelling in positive and negative direction,
respectively, are separated in time. This means far enough from the end of a SHPB. One
single measuring record can then be split into two measuring records, one for the wave
travelling in positive z-direction, and one for the wave travelling in negative z-direction.
The remaining parts of the records should be padded with zeros before a Fourier
transform is made. After Fourier transformation, the two measuring records will give two
constants Cþ and C� in equation (73). One row in the system of equations can then be
separated into two rows,

e�ikpza 0

0 eikpza

" #
Ap

Bp

" #
¼

Cþ
ap=Dap

C�
ap=Dap

" #
; ð77Þ

which are clearly independent of each other.
It should be noted here that this separation should be done after e0 is estimated, since

the constant strain is not associated to a direction. Another note is that the complete
waves travelling in the two directions, or at least the major part, should have passed all
measuring positions in the experiment.

9. EXPERIMENTS

A magnesium (alloy AZ61-F) bar with square cross-section was used. The side length of
the cross-section was 12mm (a ¼ 6mm), and the length of the bar was 2�37m. The density
was 1800 kg/m3. Strain gauges measuring axial strain were placed at 1000, 750, 330 and
150mm from one bar end. These positions are labelled 1–4, respectively. Two strain
gauges on opposite sides of the bar were placed at each position and connected to opposite
branches of Wheatstone bridges in order to cancel the effects of flexural waves. In
addition, strain gauges measuring transverse strains were placed at position 1. The signals
from the strain gauges were amplified and then recorded by a transient recorder (Nicolet
Integra 20) with sampling frequency 1MHz.

A projectile consisting of a 500mm long bar with a circular cross-section with diameter
12mm, manufactured in the same material as the square bar, was used to create
longitudinal waves in the bar. The projectile was fired from an air gun.

Two experiments were carried out. The first was made to calibrate the bar. Axial and
transverse strains in position 1 were recorded. The second experiment was carried out to
estimate the mean displacements and stresses at the free end of the bar. Also, the energy
flux through the bar end was calculated. Axial strains were measured at the four strain
gauge positions in one single experiment. The first two positions were far enough from the
bar end to enable separation in time of the incident and reflected waves. The data from the
four strain gauge positions were used in six different ways in order to investigate the
influence on the results from (a) the number of measuring positions used, and (b) if the
incident and reflected waves were separated or not, in the data processing. The six cases
were configured according to Table 1, where ‘‘S’’ means separated. ‘‘N’’ means not
separated and ‘‘}’’ means not used.



Table 1

Used measuring positions in data processing

Case Pos. 1 Pos. 2 Pos. 3 Pos. 4

A } S } }
B } N } N
C } S } N
D } N N N
E N N N N
F S S N N
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10. RESULTS

The co-ordinate functions given in Appendix A were used in the computations. Explicit
expressions for the matrices can be found in Appendix B. The parameter n; associated with
the maximal order of the polynomial co-ordinate functions in the matrix U; was set to
n ¼ 6: No difference in the results was found with n ¼ 4:

The results were normalized. The typical axial strain eref ¼ 1�82 
 10�3 and duration
tref ¼ 0�2 
 10�3 s of the incident wave were used to determine the reference quantities

uref ¼ c0eref tref ; ð78Þ

sref ¼ Eeref ð79Þ
and

Pref ¼ 4a2Ec0e2ref : ð80Þ

10.1. EXPERIMENT 1: CALIBRATION

The measured strains versus time can be seen in Figure 1. The transverse strain has an
offset of 0�2 in order to separate the signals. From the time difference between the front of
the incident and reflected waves, Young’s modulus E was determined to be 45GPa.

The complex-valued amplitudes Czp and Cyp in equation (65) were obtained from a DFT
of the strains in Figure 1. The ratio Czp=Cyp will have large errors if the denominator is
close to zero, which will occur if the energy content in the frequency component is low.
The energy content is related to the square of the amplitude, cf. the last term in equation
(54), which makes the quantity jC2

ypj a good measure of which components to be accepted
to use in the calibrating procedure. Figure 2 shows this quantity versus dimensionless
angular frequency. The lower limit for acceptance of the components is shown as the
smooth curve in the figure. The limit function is constructed to accept the frequency
components with high energy content compared to its neighbouring frequencies.

Figure 3 shows the absolute values of the ratios of amplitudes for axial and transverse
strains versus angular frequency. The solid line is obtained from the theoretical model
(Dz=Dy) and the crosses come from the measurements (Cz=Cy). The experimental values at
low frequencies are the most reliable as these frequencies are associated with the highest
energy, cf. Figure 2. At o=o0 ¼ 0; the value should theoretically be 1=n: From these
experiments, n was estimated to be 0�3021, which was used when calculating Dz=Dy in the
figure.

Figure 4 shows the phase angle of the same complex-valued ratios as in Figure 3. It can
be seen that for o=o0 > 1�4; the data are not reliable. This frequency corresponds to the



Figure 1. Measured axial and transverse normalized strains at position 1 versus normalized time. Transverse
strain has offset 0�2 for clarity.

Figure 2. Absolute value of squared complex amplitudes for measured transverse strains at position 1 versus
dimensionless angular frequency. Lower limit for accepted values in calibrating procedure is marked by the
smooth curve.
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wavelength l ¼ 4a (two side lengths of the bar). In Experiment 2, frequencies higher than
o=o0 ¼ 1�4 were filtered.

10.2. EXPERIMENT 2: END CONDITIONS AND ENERGY FLUX

The strains at the four strain gauge positions versus time is shown in Figure 5. The
strains have offsets which separate them in the figure. It can be seen that the incident and



Figure 3. Absolute value of ratio of complex amplitudes for axial and transverse strains versus dimensionless
angular frequency from theoretical model (solid line) and measurements (crosses).

Figure 4. Phase angle of ratio of complex amplitudes for axial and transverse strains versus dimensionless
angular frequency for theoretical model (solid line) and measurements (crosses).
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reflected waves are separated in time at the first two strain gauge positions, but not at the
other two.

Figure 6 shows the mean axial displacements versus time at the bar end evaluated
according to the six cases given in Table 1. Cases B–F have offsets for clarity.

Figure 7 shows the mean axial stress at the bar end versus time evaluated according to
the six cases. As the bar end is free, the stresses should be zero. As mentioned earlier, the
stress is normalized to the typical axial stress in the incident wave.



Figure 5. Normalized strains in the four measuring positions versus normalized time. Positions 2–4 have
offsets 0�3, 0�6 and 0�9 for clarity.

Figure 6. Normalized mean axial displacement over bar end versus normalized time for the six cases. Cases B–F
have offsets 0�2, 0�4, . . . , 1�0 for clarity.
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Figure 8 shows energy flux through the bar end. The energy flux through a free bar end
should be zero, and, again, the normalization is made with reference to the incident wave.

11. DISCUSSION

A mathematical model used to find dispersion relations, etc., for elastic stress waves in
bars, and a method to solve the eigenvalue problem obtained, has been presented. The



Figure 7. Normalized mean axial stress over bar end versus normalized time for the six cases. Cases B–F have
offsets 0�2, 0�4, . . . , 1�0 for clarity.

Figure 8. Normalized energy flux at bar end versus normalized time for the six cases. Cases B–F have offsets
0�2, 0�4, . . . , 1�0 for clarity.
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model has been coupled to experimental data and used to evaluate wave propagation in
the bar.

Information from the model has also been used to calibrate material data of the bar. By
measuring both axial and transverse strains, the Poisson ratio n can be accurately
estimated. This procedure also gives information about the upper frequency limit for
reliable data.
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A method based on redundant measurements, used to increase the accuracy of the
results, has also been developed. A possibility to increase the degree of redundancy
prevails if the waves travelling in the two directions in the bar can be separated in time at a
measuring position. One data record can then be split into two. The results show that the
separation of waves improves the accuracy of the results significantly, e.g., cf. Figure 7
where cases A, C and F uses separation of waves. If such a separation is not possible, the
number of measuring positions may have to be increased instead in order to get good
results. Using only two measuring positions without any splitting of the data records
appeared to give bad estimation for the stresses and energy flux in the bar. Again, cf.
Figures 7 and 8 where case B uses this method. It can be seen that cases D and E, using
more measuring positions but still no separation, gives better results. For estimation of the
axial displacement at the end of the bar, cf. Figure 6 the same result was obtained for all
cases. This is due to the fact that displacements are integrated from the measured strains,
and the integration cancels small fluctuations.
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APPENDIX A: CO-ORDINATE FUNCTIONS FOR LONGITUDINAL WAVES IN A BAR
WITH SQUARE CROSS-SECTION

Longitudinal waves have the following symmetry conditions:

uxðx; yÞ ¼ uxðx;�yÞ ¼ �uxð�x; yÞ; uyðx; yÞ ¼ uxðy; xÞ ðA:1;A:2Þ

and

uzðx; yÞ ¼ uzðx;�yÞ ¼ uzð�x; yÞ ¼ uzðy; xÞ: ðA:3Þ

The matrix of co-ordinate functions is

U
3
m

¼
Ua 0

0 Ub

" #
; ðA:4Þ

where (3 
 m) is the size of the matrix and

m ¼ ma þ mb: ðA:5Þ

The submatrices are

Ua

2
ma

¼
/T

x

/T
y

" #
; Ub

1
mb

¼ /T
z ; ðA:6Þ

where

/T
x ¼

�
/T

x0 /T
x2 /T

x4 . . ./
T
xn

�
; /T

z ¼
�
/T

z0 /T
z2 /T

z4 . . ./
T
zn

�
ðA:7;A:8Þ

and

/yðx; yÞ ¼ /xðy; xÞ: ðA:9Þ

The vectors /x and /y have the length

ma ¼ n

2
þ 1

� �2

ðA:10Þ
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and the vector /z has the length

mb ¼ 1

2

n

2
þ 1

� � n

2
þ 2

� �
: ðA:11Þ

The subvectors are

/T
xk ¼ x

a

� �kþ1

uT
n ðyÞ; /T

zk ¼ x

a

� �k

uT
k ðyÞ þ

y

a

� �k

uT
k ðxÞ; ðA:12;A:13Þ

where the u-vectors are defined by

uT
k ðxÞ ¼ 1

x

a

� �2 x

a

� �4

. . .
x

a

� �k
� �

: ðA:14Þ

The parameter n is chosen according to wanted order on the polynomial co-ordinate
functions. The value (n þ 1) is the maximal order for variables x and y; and n is the
maximal order for z:

APPENDIX B: INTEGRATED MATRICES

In the following formulas, the parameters n; m; ma and mb are defined in Appendix A,
and the parameters a1; a2 and a3 are the elastic constants from equation (21).

B.1. MATRICES K0 AND *KK0

K0
m
m

¼ *KK0
m
m

¼
K0a 0

0 K0b

" #
; K0a

ma
ma

¼

K00
0a K02

0a � � � K0n
0a

K20
0a K22

0a � � � K2n
0a

..

. ..
. . .

. ..
.

Kn0
0a Kn2

0a � � � Knn
0a

2
666664

3
777775; ðB:1;B:2Þ

K0b
mb
mb

¼

K00
0b K02

0b � � � K0n
0b

K20
0b K22

0b � � � K2n
0b

..

. ..
. . .

. ..
.

Kn0
0b Kn2

0b � � � Knn
0b

2
666664

3
777775; ðB:3Þ

Kkl
0a

ðn=2þ1Þ
ðn=2þ1Þ
¼

Kkl00
0a Kkl02

0a � � � Kkl0n
0a

Kkl20
0a Kkl22

0a � � � Kkl2n
0a

..

. ..
. . .

. ..
.

Kkln0
0a Kkln2

0a � � � Kklnn
0a

2
666664

3
777775; ðB:4Þ

Kkl
0b

ðk=2þ1Þ
ðl=2þ1Þ
¼

Kkl00
0b Kkl02

0b � � � Kkl0l
0b

Kkl20
0b Kkl22

0b � � � Kkl2l
0b

..

. ..
. . .

. ..
.

Kklk0
0b Kklk2

0b � � � Kklkl
0b

2
666664

3
777775; ðB:5Þ
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K
klpq
0a ¼ 8a1

ðk þ 1Þðl þ 1Þ
ðk þ l þ 1Þðp þ q þ 1Þ þ 8a2

ðk þ 1Þðl þ 1Þ
ðk þ q þ 1Þðl þ p þ 1Þ

þ 8a3
pq

ðk þ l þ 3Þðp þ q � 1Þ þ
pq

ðk þ q þ 1Þðl þ p þ 1Þ

� �
; ðB:6Þ

K
klpq
0b ¼ 8a3

kl

ðk þ l � 1Þðp þ q þ 1Þ þ
kq

ðk þ q � 1Þðl þ p þ 1Þ

�

þ lp

ðl þ p � 1Þðk þ q þ 1Þ þ
pq

ðp þ q þ 1Þðk þ l þ 1Þ

�
: ðB:7Þ

B.2. MATRICES K1 AND *KK1

K1
m
m

¼
0 K1b

K1a 0

" #
; *KK1

m
m
¼

0 K1b

�K1a 0

" #
; ðB:8Þ

K1a
mb
ma

¼

K00
1a K02

1a � � � K0n
1a

K20
1a K22

1a � � � K2n
1a

..

. ..
. . .

. ..
.

Kn0
1a Kn2

1a � � � Knn
1a

2
666664

3
777775; K1b

ma
mb

¼

K00
1b K02

1b � � � K0n
1b

K20
1b K22

1b � � � K2n
1b

..

. ..
. . .

. ..
.

Kn0
1b Kn2

1b � � � Knn
1b

2
666664

3
777775; ðB:9;B10Þ

Kkl
1a

ðk=2þ1Þ
ðn=2þ1Þ
¼

Kkl00
1a Kkl02

1a � � � Kkl0n
1a

Kkl20
1a Kkl22

1a � � � Kkl2n
1a

..

. ..
. . .

. ..
.

Kklk0
1a Kklk2

1a � � � Kklkn
1a

2
666664

3
777775; ðB:11Þ

Kkl
1b

ðn=2þ1Þ
ðl=2þ1Þ
¼

Kkl00
1b Kkl02

1b � � � Kkl0l
1b

Kkl20
1b Kkl22

1b � � � Kkl2l
1b

..

. ..
. . .

. ..
.

Kkln0
1b Kkln2

1b � � � Kklnl
1b

2
666664

3
777775; ðB:12Þ

K
klpq
1a ¼ 8a2

l þ 1

ðk þ l þ 1Þðp þ q þ 1Þ þ
l þ 1

ðl þ p þ 1Þðk þ q þ 1Þ

� �
; ðB:13Þ

K
klpq
1b ¼ 8a3

l

ðk þ l þ 1Þðp þ q þ 1Þ þ
q

ðk þ q þ 1Þðl þ p þ 1Þ

� �
: ðB:14Þ
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B.3. MATRICES K2 AND *KK2

K2
m
m

¼ *KK2
m
m

¼
K2a 0

0 K2b

" #
; K2a

ma
ma

¼

K00
2a K02

2a � � � K0n
2a

K20
2a K22

2a � � � K2n
2a

..

. ..
. . .

. ..
.

Kn0
2a Kn2

2a � � � Knn
2a

2
666664

3
777775; ðB:15;B:16Þ

K2b
mb
mb

¼

K00
2b K02

2b � � � K0n
2b

K20
2b K22

2b � � � K2n
2b

..

. ..
. . .

. ..
.

Kn0
2b Kn2

2b � � � Knn
2b

2
666664

3
777775; ðB:17Þ

Kkl
2a

ðn=2þ1Þ
ðn=2þ1Þ
¼

Kkl00
2a Kkl02

2a � � � Kkl0n
2a

Kkl20
2a Kkl22

2a � � � Kkl2n
2a

..

. ..
. . .

. ..
.

Kkln0
2a Kkln2

2a � � � Kklnn
2a

2
666664

3
777775; ðB:18Þ

Kkl
2b

ðk=2þ1Þ
ðl=2þ1Þ
¼

Kkl00
2b Kkl02

2b � � � Kkl0l
2b

Kkl20
2b Kkl22

2b � � � Kkl2l
2b

..

. ..
. . .

. ..
.

Kklk0
2b Kklk2

2b � � � Kklkl
2b

2
666664

3
777775; ðB:19Þ

K
klpq
2a ¼ 8a3

ðk þ l þ 3Þðp þ q þ 1Þ; ðB:20Þ

K
klpq
2b ¼ 8a1

1

ðk þ l þ 1Þðp þ q þ 1Þ þ
1

ðk þ q þ 1Þðl þ p þ 1Þ

� �
: ðB:21Þ

B.4. MATRICES M AND *MM

The matrices M and *MM are same as K2; if the parameters a1 and a3 are set to 1 in
equations (B.20) and (B.21).

B.5. MATRIX F

F
ð2þ1Þ
ðmaþmbÞ

¼
0 0

0 fTz

" #
; fTz ¼

��
f0z
�T �

f2z
�T � � �

�
fn

z

�T�
; ðB:22;B:23Þ
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ðfk
z Þ

T ¼ ½f k0
z f k2

z � � � f kk
z �; f kp

z ¼ 2

ðk þ 1Þðp þ 1Þ: ðB:24;B:25Þ

B.6. MATRIX Fxy

Fxy
6
m

¼ 1

a

Fa
xy 0

0 0

" #
; Fa
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where a is half the side length of the square cross-section.
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